3.3.42 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx\) [242]

3.3.42.1 Optimal result
3.3.42.2 Mathematica [C] (warning: unable to verify)
3.3.42.3 Rubi [A] (verified)
3.3.42.4 Maple [A] (verified)
3.3.42.5 Fricas [A] (verification not implemented)
3.3.42.6 Sympy [F]
3.3.42.7 Maxima [F]
3.3.42.8 Giac [F]
3.3.42.9 Mupad [F(-1)]

3.3.42.1 Optimal result

Integrand size = 25, antiderivative size = 137 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {7 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {5 \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

output
-7/4*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c 
))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)/cos(d* 
x+c)^(1/2)+5/2*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
 
3.3.42.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.60 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.80 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {-\frac {35}{2} \cos ^2(c+d x) \cot \left (\frac {1}{2} (c+d x)\right ) \csc ^4\left (\frac {1}{2} (c+d x)\right ) \left (78+108 \cos (c+d x)+80 \cos (2 (c+d x))-204 \cos (3 (c+d x))-62 \cos (4 (c+d x))+12 \text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) (64+55 \cos (c+d x)+64 \cos (2 (c+d x))+17 \cos (3 (c+d x))) \sqrt {2-2 \sec (c+d x)}\right )-768 \cos ^5\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (2,2,\frac {5}{2};1,\frac {9}{2};-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^3\left (\frac {1}{2} (c+d x)\right )}{3360 d \cos ^{\frac {5}{2}}(c+d x) (a (1+\cos (c+d x)))^{3/2}} \]

input
Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)),x]
 
output
((-35*Cos[c + d*x]^2*Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^4*(78 + 108*Cos[c + 
 d*x] + 80*Cos[2*(c + d*x)] - 204*Cos[3*(c + d*x)] - 62*Cos[4*(c + d*x)] + 
 12*ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[(c + d*x)/2]^2*( 
64 + 55*Cos[c + d*x] + 64*Cos[2*(c + d*x)] + 17*Cos[3*(c + d*x)])*Sqrt[2 - 
 2*Sec[c + d*x]]))/2 - 768*Cos[(c + d*x)/2]^5*HypergeometricPFQ[{2, 2, 5/2 
}, {1, 9/2}, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]*Sin[(c + d*x)/2]^3)/(3360 
*d*Cos[c + d*x]^(5/2)*(a*(1 + Cos[c + d*x]))^(3/2))
 
3.3.42.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3245, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {5 a-2 a \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 a-2 a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {5 a-2 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {2 \int -\frac {7 a^2}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-7 a \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-7 a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {\frac {14 a^2 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {7 \sqrt {2} \sqrt {a} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

input
Int[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)),x]
 
output
-1/2*Sin[c + d*x]/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)) + ((-7 
*Sqrt[2]*Sqrt[a]*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]] 
*Sqrt[a + a*Cos[c + d*x]])])/d + (10*a*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]] 
*Sqrt[a + a*Cos[c + d*x]]))/(4*a^2)
 

3.3.42.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 
3.3.42.4 Maple [A] (verified)

Time = 5.57 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.43

method result size
default \(\frac {\left (7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+5 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+14 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+4 \sqrt {2}\, \sin \left (d x +c \right )+7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{4 d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )^{2} a^{2}}\) \(196\)

input
int(1/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/4/d*(7*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*arcsin(cot(d*x+c)- 
csc(d*x+c))+5*sin(d*x+c)*cos(d*x+c)*2^(1/2)+14*cos(d*x+c)*(cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+4*2^(1/2)*sin(d*x+c)+7*(co 
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c)))*(a*(1+cos(d* 
x+c)))^(1/2)/cos(d*x+c)^(1/2)/(1+cos(d*x+c))^2*2^(1/2)/a^2
 
3.3.42.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.25 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {7 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (5 \, \cos \left (d x + c\right ) + 4\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \]

input
integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")
 
output
-1/4*(7*sqrt(2)*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a) 
*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*si 
n(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2*sqrt(a*cos(d*x + c) + 
a)*(5*cos(d*x + c) + 4)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + 
c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))
 
3.3.42.6 Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate(1/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(3/2),x)
 
output
Integral(1/((a*(cos(c + d*x) + 1))**(3/2)*cos(c + d*x)**(3/2)), x)
 
3.3.42.7 Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(1/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)
 
3.3.42.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(1/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)
 
3.3.42.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)),x)
 
output
int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)), x)